The Drosophila homeotic target gene centrosomin (cnn) encodes a novel centrosomal protein with leucine zippers and maps to a genomic region required for midgut morphogenesis

Author:

Heuer J.G.1,Li K.1,Kaufman T.C.1

Affiliation:

1. Howard Hughes Medical Institute, Indiana University, Bloomington 47405, USA.

Abstract

The products of the homeotic genes in Drosophila are transcription factors that are necessary to impose regional identity along the anterior-posterior axis of the developing embryo. However, the target genes under homeotic regulation that control this developmental process are largely unknown. We have utilized an immunopurification method to clone target genes of the Antennapedia protein (ANTP). We present here the characterization of centrosomin (cnn), one of the target genes isolated using this approach. The spatial and temporal expression of the cnn gene in the developing visceral mesoderm (VM) of the midgut and the central nervous system (CNS) of wild-type and homeotic mutant embryos is consistent with the idea that cnn is a homeotic target. In the VM, Antp and abdominal-A (abd-A) negatively regulate cnn, while Ultrabithorax (Ubx) shows positive regulation. In the CNS, cnn is regulated positively by Antp and negatively by Ubx and abd-A. Characterization of a cDNA encoding CNN predicts a novel structural protein with three leucine zipper motifs and several coiled-coil domains exhibiting limited homology to the rod portion of myosin. Immunocytochemical results demonstrate that the cnn encoded protein is localized to the centrosome and the accumulation pattern is coupled to the nuclear and centrosome duplication cycles of cleavage. In addition, evidence suggests that the expression of the cnn gene in the VM correlates with the morphogenetic function of Ubx in that tissue, i.e., the formation of the second midgut construction. The centrosomal localization of CNN and the involvement of microtubules in midgut morphogenesis suggest that this protein may participate in mitotic spindle assembly and the mechanics of morphogenesis through an interaction with microtubules, either directly or indirectly.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3