Target-independent diversification and target-specific projection of chemically defined retinal ganglion cell subsets

Author:

Yamagata M.1,Sanes J.R.1

Affiliation:

1. Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.

Abstract

In diverse vertebrate species, defined subsets of retinal ganglion cells (RGCs, the neurons that project from retina to brain) are distinguishable on the basis of their dendritic morphology, physiological properties, neurotransmitter content and synaptic targets. Little is known about when this diversity arises, whether diversification requires target-derived signals, and how subtype-specific projection patterns are established. Here, we have used markers for two chemically defined RGC subsets in chick retina to address these issues. Antibodies to substance P (SP) and the nicotine acetylcholine receptor (AChR) beta 2 subunit label two small (< 10%), mutually exclusive groups of RGCs in mature retina. SP and AChRs accumulate in distinct RGCs before retinotectal synapses have formed. Moreover, both populations of RGCs form in retinae that develop following tectal ablation or transplantation to the coelomic cavity. Thus, RGC subsets acquire distinct neurotransmitter phenotypes in the absence of extraretinal cues. In the mature optic tectum, SP- and AChR-positive RGC axonal arbors are confined to distinct retinorecipient (synaptic) laminae. In the developing tectum, SP- and AChR-positive axons are initially intermingled in a superficial fiber layer, but then enter and arborize in appropriate laminae soon after those laminae form. Importantly, SP-positive axons, which synapse in a superficial lamina, never extend into the deeper, AChR-positive lamina. Tectal interneurons rich in SP receptors are concentrated in the lamina to which SP-positive RGC axons project, and a set of cholinergic (choline acetyltransferase-positive) tectal projection neurons elaborate dendrites in the lamina to which AChR-positive RGC axons project. These populations of tectal neurons, which are likely targets of the RGC subsets, form in tecta that develop following enucleation. Thus, RGCs and their targets can diversify in each others absence. Accordingly, we propose that the lamina-selective connectivity we observe reflects the presence of complementary cues on RGC subsets and their laminar targets.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3