The induction of multiple cell cycle events precedes target-related neuronal death

Author:

Herrup K.1,Busser J.C.1

Affiliation:

1. Department of Neurology, Case Western Reserve Medical School, Cleveland, OH 44106, USA.

Abstract

Unexpected nerve cell death has been reported in several experimental situations where neurons have been forced to re-enter the cell cycle after leaving the ventricular zone and entering the G0, non-mitotic stage. To determine whether an association between cell death and unscheduled cell cycling might be found in conjunction with any naturally occurring developmental events, we have examined target-related cell death in two neuronal populations, the granule cells of the cerebellar cortex and the neurons of the inferior olive. Both of these cell populations have a demonstrated developmental dependency on their synaptic target, the cerebellar Purkinje cell. Two mouse neurological mutants, staggerer (sg/sg) and lurcher (+/Lc), are characterized by intrinsic Purkinje cell deficiencies and, in both mutants, substantial numbers of cerebellar granule cells and inferior olive neurons die due to the absence of trophic support from their main postsynaptic target. We report here that the levels of three independent cell cycle markers--cyclin D, proliferating cell nuclear antigen and bromodeoxyuridine incorporation--are elevated in the granule cells before they die. Although lurcher Purkinje cells die during a similar developmental period, no compelling evidence for any cell cycle involvement in this instance of pre-programmed cell death could be found. While application of the TUNEL technique (in situ terminal transferase end-labeling of fragmented DNA) failed to label dying granule cells in either mutant, light and electron microscopic observations are consistent with the interpretation that the death of these cells is apoptotic in nature. Together, the data indicate that target-related cell death in the developing central nervous system is associated with a mechanism of cell death that involves an apparent loss of cell cycle control.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3