Xwnt-8b: a maternally expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis

Author:

Cui Y.1,Brown J.D.1,Moon R.T.1,Christian J.L.1

Affiliation:

1. Department of Cell Biology and Anatomy, Oregon Health Sciences University, School of Medicine, Portland 97201, USA.

Abstract

In amphibian embryos, establishment of dorsal-ventral asymmetry is believed to involve dorsal-ventral differences in vegetally derived mesoderm-inducing signals and/or differences in the competence of animal hemisphere (ectodermal) cells to respond to these signals. Previous studies have shown that certain Wnt proteins can generate an ectopic dorsal axis when misexpressed, and that they do so by modifying the response of ectodermal cells to inducers. None of these Wnt proteins are expressed at an appropriate time to do so in vivo. In this study, we describe the isolation and characterization of a full length cDNA for the Xenopus Wnt gene, Xwnt-8b, whose biological activity and expression pattern suggest that it may be involved in establishment of the dorsoventral axis. Both maternal and zygotic Xwnt-8b transcripts undergo alternative splicing to generate mRNAs which encode two different forms of Xwnt-8b protein. During early cleavage stages Xwnt-8b transcripts are confined primarily to animal hemisphere blastomeres, while zygotically derived Xwnt-8b transcripts are restricted almost exclusively to a band of cells in the prospective forebrain of neurula and tailbud stage embryos. Ectopically expressed Xwnt-8b can completely rescue dorsal development of embryos ventralized by exposure to ultraviolet light, and can induce a complete secondary axis in wild-type embryos. Axis induction is observed only if Xwnt-8b is supplied prior to the onset of zygotic gene transcription. This biological activity, together with the presence of maternal Xwnt-8b transcripts in cells that will be induced to form the dorsal mesoderm, is consistent with the possibility that Xwnt-8b may be the endogenous agent that establishes asymmetry in the response of ectodermal cells to mesoderm-inducing signals, thereby initiating dorsal development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3