Hormonal induction of Dopa decarboxylase in the epidermis of Drosophila is mediated by the Broad-Complex

Author:

Hodgetts R.B.1,Clark W.C.1,O'Keefe S.L.1,Schouls M.1,Crossgrove K.1,Guild G.M.1,von Kalm L.1

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton, Canada.

Abstract

The 2B5 early puff locus corresponds to the Broad-Complex BR-C) and encodes a family of transcription factors whose members are induced by the molting hormone ecdysone. Mutations in the br subcomplementation group substantially reduce the levels of Dopa decarboxylase (DDC) in the epidermis of mature third instar larvae but not in mature second instar organisms. Enzyme levels are normal in the central nervous system of the two mutants examined. The specificity of these effects suggests that a product of the BR-C locus mediates the rapid appearance of DDC in mature third instar larvae experiencing an elevated titer of ecdysone. The likely identity of this protein has been confirmed by pursuing the observation that the br28 allele caused by the insertion of a Pelement into the Z2 DNA-binding domain. Both the transcript and a protein carrying this domain are present in the epidermis and a BR-C recombinant protein carrying the Z2 finger binds to the first intron of the Ddc gene. Five binding sites have been identified within the intron by DNAase I footprinting and a core consensus sequence has been derived which shares some identity with the consensus binding site of the Z2 protein to the Sgs-4 regulatory region. Our demonstration that Ddc is a target of BR-C in the epidermis is the first direct evidence of a role for this early gene in a tissue other than the salivary glands. The data reinforce the idea that BR-C, which clearly mediates a salivary gland-specific response to ecdysone, may play a widespread role in the hormone's activation of gene cascades in other target tissues.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3