The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis

Author:

Moore S.W.1,Keller R.E.1,Koehl M.A.1

Affiliation:

1. Department of Integrative Biology, University of California, Berkeley 94720-3140, USA.

Abstract

Physically, the course of morphogenesis is determined by the distribution and timing of force production in the embryo and by the mechanical properties of the tissues on which these forces act. We have miniaturized a standard materials-testing procedure (the stress-relaxation test) to measure the viscoelastic properties of the dorsal involuting marginal zone, prechordal mesoderm, and vegetal endoderm of Xenopus laevis embryos during gastrulation. We focused on the involuting marginal zone, because it undergoes convergent extension (an important and wide-spread morphogenetic process) and drives involution, blastopore closure and elongation of the embryonic axis. We show that the involuting marginal zone stiffens during gastrulation, stiffening is a special property of this region rather than a general property of the whole embryo, stiffening is greater along the anteroposterior axis than the mediolateral axis and changes in the cytoskeleton or extracellular matrix are necessary for stiffening, although changes in cell-cell adhesions or cell-matrix adhesions are not ruled out. These findings provide a baseline of data on which future experiments can be designed and make specific, testable predictions about the roles of the cytoskeleton, extracellular matrix and intercellular adhesion in convergent extension, as well as predictions about the morphogenetic role of convergent extension in early development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3