Affiliation:
1. Nelson Mandela University 1 Department of Zoology , , Gqeberha 6031 , South Africa
2. The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University 2 Department of Molecular Biosciences , , SE-106 91 Stockholm , Sweden
3. Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health 3 , D-85764 Munich-Neuherberg , Germany
Abstract
ABSTRACT
Small mammals undergo thermoregulatory adjustments in response to changing environmental conditions. Whereas small heterothermic mammals can employ torpor to save energy in the cold, homeothermic species must increase heat production to defend normothermia through the recruitment of brown adipose tissue (BAT). Here, we studied thermoregulatory adaptation in an obligate homeotherm, the African striped mouse (Rhabdomys pumilio), captured from a subpopulation living in a mesic, temperate climate with marked seasonal differences. Basal metabolic rate (BMR), non-shivering thermogenesis (NST) and summit metabolic rate (Msum) increased from summer to winter, with NST and Msum already reaching maximal rates in autumn, suggesting seasonal preparation for the cold. Typical of rodents, cold-induced metabolic rates were positively correlated with BAT mass. Analysis of cytochrome c oxidase (COX) activity and UCP1 content, however, demonstrated that thermogenic capacity declined with BAT mass. This resulted in seasonal differences in NST being driven by changes in BMR. The increase in BMR was supported by a comprehensive anatomical analysis of metabolically active organs, revealing increased mass proportions in the cold season. The thermoregulatory response of R. pumilio was associated with the maintenance of body mass throughout the year (48.3±1.4 g), contrasting large summer–winter mass reductions often observed in Holarctic rodents. Collectively, bioenergetic adaptation of this Afrotropical rodent involves seasonal organ adjustments influencing BMR, combined with a constant thermogenic capacity dictated by trade-offs in the thermogenic properties of BAT. Arguably, this high degree of plasticity was a response to unpredictable cold spells throughout the year. Consequently, the reliance on such a resource-intensive thermoregulatory strategy may expose more energetic vulnerability in changing environments of food scarcity and extreme weather conditions due to climate change, with major ramifications for survival of the species.
Funder
Nelson Mandela University
National Research Foundation
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献