Bivalves maintain repair when faced with chronically repeated mechanical stress

Author:

Crane R. L.1ORCID,Denny M. W.1ORCID

Affiliation:

1. Stanford University Department of Biology , , Stanford, CA 94305 , USA

Abstract

ABSTRACT Even though mollusks' capacity to repair shell damage is usually studied in response to a single event, their shells have to defend them against predatory and environmental threats throughout their potentially multi-decadal life. We measured whether and how mollusks respond to chronic mechanical stress. Once a week for 7 months, we compressed whole live California mussels (Mytilus californianus) for 15 cycles at ∼55% of their predicted one-time breaking force, a treatment known to cause fatigue damage in shells. We found mussels repaired their shells. Shells of experimentally stressed mussels were just as strong at the end of the experiment as those of control mussels that had not been experimentally loaded, and they were more heavily patched internally. Additionally, stressed shells differed in morphology; they were heavier and thicker at the end of the experiment than control shells but they had increased less in width, resulting in a flatter, less domed shape. Finally, the chronic mechanical stress and repair came at a cost, with stressed mussels having higher mortality and less soft tissue than the control group. Although associated with significant cost, mussels' ability to maintain repair in response to ongoing mechanical stress may be vital to their survival in harsh and predator-filled environments.

Funder

National Science Foundation

Earl H. Myers and Ethel M. Myers Oceanographic and Marine Biology Trust

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3