Antioxidant response to acute cold exposure and following recovery in juvenile Chinese soft-shelled turtles, Pelodiscus sinensis

Author:

Chen Bo-jian12,Zhang Wen-yi1ORCID,Niu Cui-juan1,Li Wen-jie1,Jia Hui1,Storey Kenneth B.3

Affiliation:

1. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, P.R. China

2. College of Animal Science and Technology, Northwest A and F University, Yangling 712100, P.R. China

3. Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada

Abstract

The antioxidant defense protects turtles from oxidative stress caused by adverse environment conditions, such as acute thermal fluctuations. However, how these defenses work remains unclear. The present study examined changes in key enzymes of the enzymatic antioxidant system and the glutathione (GSH) system at both the mRNA and enzyme activity levels during acute cold exposure and following recovery in juvenile Chinese soft-shelled turtles, Pelodiscus sinensis. Transcript levels of the upstream regulator NF-E2 related factor 2 (Nrf2) were also measured. Turtles were acclimated at 28oC (3 wks), then given acute cold exposure (8oC, 12 h) and finally placed in recovery (28oC, 24 h). The mRNA levels of cerebral and hepatic Nrf2 and of downstream antioxidant enzyme genes did not change, whereas nephric Nrf2, Manganese superoxide dismutase (MnSOD) and glutathione peroxidase 4 (GPx4) mRNAs decreased in cold exposure. During recovery, Nrf2 mRNA remained stable in all three tissues, hepatic Cu/ZnSOD, MnSOD and catalase (CAT) mRNA levels increased, and nephric MnSOD and GPx4 mRNAs did not change from the values during cold exposure. In the GSH system, mRNA levels of most enzymes remained constant during cold exposure and recovery. Unmatched with changes in mRNA level, high and stable constitutive antioxidant enzyme activities were maintained throughout whereas GPx activity significantly reduced in kidney during cold exposure and in liver and kidney during recovery. Our results suggest that the antioxidant defense regulation in response to acute cold exposure in P. sinensis may not be achieved at the transcriptional level, but may rely mainly on high constitutive antioxidant enzyme activities.

Funder

National Natural Science Foundation of China

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3