Affiliation:
1. Georgia Institute of Technology;
2. Temple University
Abstract
SummaryA diversity of animals that run on solid, level, flat, non-slip surfaces appear to bounce on their legs; elastic elements in the limbs can store and return energy during each step. The mechanics and energetics of running in natural terrain, particularly on surfaces that can yield and flow under stress, is less understood. The zebra-tailed lizard (Callisaurus draconoides), a small desert generalist with a large, elongate, tendinous hind foot, runs rapidly across a variety of natural substrates. We use high speed video to obtain detailed three-dimensional running kinematics on solid and granular surfaces to reveal how leg, foot, and substrate mechanics contribute to its high locomotor performance. Running at ~10 body length/s (~1 m/s), the center of mass oscillates like a spring-mass system on both substrates, with only 15% reduction in stride length on the granular surface. On the solid surface, a strut-spring model of the hind limb reveals that the hind foot saves about 40% of the mechanical work needed per step, significant for the lizard's small size. On the granular surface, a penetration force model and hypothesized subsurface foot rotation indicates that the hind foot paddles through fluidized granular medium, and that the energy lost during irreversible deformation of the substrate does not differ from the reduction in the mechanical energy of the center of mass. The upper hind leg muscles must perform three times as much mechanical work on the granular surface as on the solid surface to compensate for the greater energy lost within the foot and to the substrate.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Reference75 articles.
1. Principles of Animal Locomotion
2. The mechanics of hopping by kangaroos (Macropodidae);Alexander;J. Zool.,1975
3. Adhesive force of a single gecko foot-hair;Autumn;Nature,2000
4. Evolution of sprint speed in lacertid lizards: morphological, physiological and behavioral covariation;Bauwens;Evolution,1995
5. Muscle function in vivo: a comparison of muscles used for elastic energy savings versus muscles used to generate mechanical power;Biewener;Integr. Comp. Biol.,1998
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献