Zebrafish models of skeletal dysplasia induced by cholesterol biosynthesis deficiency

Author:

Anderson Rebecca A.1ORCID,Schwalbach Kevin T.2ORCID,Mui Stephanie R.2,LeClair Elizabeth E.3ORCID,Topczewska Jolanta M.2ORCID,Topczewski Jacek124ORCID

Affiliation:

1. Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA

2. Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA

3. Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA

4. Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland

Abstract

Human disorders of the post-squalene cholesterol biosynthesis pathway frequently result in skeletal abnormalities, yet our understanding of the mechanisms involved is limited. In a forward genetic approach, we have found that a late-onset skeletal mutant, named kolibernu7, is the result of a cis-acting regulatory mutation leading to loss of methylsterol monooxygenase 1 (msmo1) expression within prehypertrophic chondrocytes. Generated msmo1nu81 knockdown mutation resulted in lethality at larva stage. We demonstrated this is a result of both cholesterol deprivation and sterol intermediate accumulation by creating a mutation eliminating activity of Lanosterol synthase (Lss). Our results indicate that double lssnu60;msmo1nu81and single lssnu60 mutants survive significantly longer than msmo1nu81 homozygotes. Liver-specific restoration of either Msmo1 or Lss in corresponding mutant backgrounds suppresses larval lethality. Rescued mutants develop dramatic skeletal abnormalities, with a loss of Msmo1 activity resulting in a more severe patterning defect of a near-complete loss of hypertrophic chondrocytes marked by col10a1 expression. Our analysis suggests that hypertrophic chondrocytes depend on endogenous cholesterol synthesis, and blocking C4 demethylation exacerbates the cholesterol deficiency phenotype. Our findings offer new insight into the genetic control of bone development and provide new zebrafish models for human disorders of the cholesterol biosynthesis pathway.

Funder

National Institute of Dental and Craniofacial Research

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3