Vascular endothelial and endocardial progenitors differentiate as cardiomyocytes in the absence of Etsrp/Etv2 function

Author:

Palencia-Desai Sharina12,Kohli Vikram1,Kang Jione3,Chi Neil C.4,Black Brian L.3,Sumanas Saulius12

Affiliation:

1. Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA.

2. University Of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.

3. Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158 USA.

4. Department of Medicine, Division of Cardiology, University of California, San Diego School of Medicine, San Diego, CA 92093, USA.

Abstract

Previous studies have suggested that embryonic vascular endothelial, endocardial and myocardial lineages originate from multipotential cardiovascular progenitors. However, their existence in vivo has been debated and molecular mechanisms that regulate specification of different cardiovascular lineages are poorly understood. An ETS domain transcription factor Etv2/Etsrp/ER71 has been recently established as a crucial regulator of vascular endothelial differentiation in zebrafish and mouse embryos. In this study, we show that etsrp-expressing vascular endothelial/endocardial progenitors differentiate as cardiomyocytes in the absence of Etsrp function during zebrafish embryonic development. Expression of multiple endocardial specific markers is absent or greatly reduced in Etsrp knockdown or mutant embryos. We show that Etsrp regulates endocardial differentiation by directly inducing endocardial nfatc1 expression. In addition, Etsrp function is required to inhibit myocardial differentiation. In the absence of Etsrp function, etsrp-expressing endothelial and endocardial progenitors initiate myocardial marker hand2 and cmlc2 expression. Furthermore, Foxc1a function and interaction between Foxc1a and Etsrp is required to initiate endocardial development, but is dispensable for the inhibition of myocardial differentiation. These results argue that Etsrp initiates endothelial and endocardial, and inhibits myocardial, differentiation by two distinct mechanisms. Our findings are important for the understanding of genetic pathways that control cardiovascular differentiation during normal vertebrate development and will also greatly contribute to the stem cell research aimed at regenerating heart tissues.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3