Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp.

Author:

Hager Felix A.1,Kirchner Wolfgang H.1

Affiliation:

1. Ruhr University Bochum, Faculty of Biology and Biotechnology, Universitätsstrasse 150, D-44801 Bochum, Germany

Abstract

SUMMARY Fungus-growing higher termites build long subterranean galleries that lead outwards from the nest to foraging sites. When soldiers are disturbed, they tend to drum with their heads against the substrate and thereby create vibrational alarm signals. The present study aimed at describing these acoustic signals, how they are elicited, produced and perceived, and how these signals propagate within the galleries and nests over long distances in two termite species of the Southern African savannah, Macrotermes natalensis and an Odontotermes sp. The signals consist of trains of pulses with a pulse repetition rate of 10–20 Hz. The galleries have physical features that promote vibrational communication and are used as channels for long-distance communication. In M. natalensis, the signal propagation velocity is ~130 m s−1 and the signals are attenuated by ~0.4 dB per centimetre distance. Nestmates are extremely sensitive to these vibrations with a behavioural threshold amplitude of 0.012 m s−2. Workers respond by a fast retreat into the nest and soldiers are recruited to the source of vibration. Soldiers also start to drum with a reaction time of about 0.3 s, thereby amplifying the intensity of the signal. This social long-distance communication through chains of signal-reamplifying termites results in a relatively slow propagation (1.3 m s−1) of the signal without decrement over distances of several metres.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference44 articles.

1. Vibrational communication in the fiddler crab, Uca pugilator;Aicher;J. Comp. Physiol. A,1990

2. Termites in ecosystems;Bignell,2000

3. Pheromones and chemical ecology of dispersal and foraging in termites;Bordereau,2011

4. The attenuation constant of earth materials;Born;Geophysics,1941

5. Compressional and surface waves in sand: used by desert scorpions to locate prey;Brownell;Science,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3