Re-epithelialization of cutaneous wounds in adult zebrafish uses a combination of mechanisms at play during wound closure in embryonic and adult mammals

Author:

Richardson Rebecca1,Metzger Manuel1,Knyphausen Philipp12,Ramezani Thomas1,Slanchev Krasimir3,Kraus Christopher1,Schmelzer Elmon4,Hammerschmidt Matthias156ORCID

Affiliation:

1. Institute of Developmental Biology, University of Cologne, D-50674 Cologne, Germany

2. Graduate School for Biological Sciences, University of Cologne, D-50674 Cologne, Germany

3. Georges-Koehler Laboratory, Max-Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany

4. Cell Biology, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany

5. Center for Molecular Medicine Cologne, University of Cologne, D-50931 Cologne, Germany

6. Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, D-50931 Cologne, Germany

Abstract

Re-epithelialization of cutaneous wounds in adult mammals takes days to complete and relies on numerous signalling cues and multiple overlapping cellular processes that take place both within the epidermis and in other participating tissues. Re-epithelialization of partial- or full-thickness skin wounds of adult zebrafish, however, is extremely rapid and largely independent of the other processes of wound healing. Live imaging after treatment with transgene-encoded or chemical inhibitors reveals that re-epithelializing keratinocytes repopulate wounds by TGFβ- and integrin-dependent lamellipodial crawling at the leading edges of the epidermal tongue. In addition, re-epithelialization requires long-range Rho kinase-, JNK- and, to some extent, planar cell polarity-dependent epithelial rearrangements within the following epidermis, involving radial intercalations, flattening and directed elongations of cells. These rearrangements lead to a massive recruitment of keratinocytes from the adjacent epidermis and make re-epithelialization independent of keratinocyte proliferation and the mitogenic effect of FGF signalling, which are only required after wound closure, allowing the epidermis outside the wound to re-establish its normal thickness. Together these results demonstrate that the adult zebrafish is a valuable in-vivo model for studying, and visualizing, the processes involved in cutaneous wound closure, facilitating the dissection of direct from indirect, and motogenic from mitogenic effects of genes and molecules affecting wound re-epithelialization.

Funder

Deutsche Forschungsgemeinschaft

Seventh Framework Programme

National Institute of General Medical Sciences

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3