The whole-body withdrawal response of Lymnaea stagnalis. I. Identification of central motoneurones and muscles

Author:

Ferguson G. P.1,Benjamin P. R.1

Affiliation:

1. Sussex Invertebrate Neuroscience Group, School of Biology, University of Sussex, Brighton, United Kingdom.

Abstract

Two muscle systems mediated the whole-body withdrawal response of Lymnaea stagnalis: the columellar muscle (CM) and the dorsal longitudinal muscle (DLM). The CM was innervated by the columellar nerves and contracted longitudinally to shorten the ventral head-foot complex and to pull the shell forward and down over the body. The DLM was innervated by the superior and inferior cervical nerves and the left and right parietal nerves. During whole-body withdrawal, the DLM contracted synchronously with the CM and shortened the dorsal head-foot longitudinally. The CM and the DLM were innervated by a network of motoneurones. The somata of these cells were located in seven ganglia of the central nervous system (CNS), but were especially concentrated in the bilaterally symmetrical A clusters of the cerebral ganglia. The CM was innervated by cells in the cerebral and pedal ganglia and the DLM by cells in the cerebral, pedal, pleural and left parietal ganglia. Individual motoneurones innervated large, but discrete, areas of muscle, which often overlapped with those innervated by other motoneurones. Motoneuronal action potentials evoked one-for-one non-facilitating excitatory junction potentials within muscle fibres. No all-or-nothing action potentials were recorded in the CM or DLM, and they did not appear to be innervated by inhibitory motoneurones. The whole network of motoneurones was electrotonically coupled, with most cells on one side of the CNS strongly coupled to each other but weakly coupled to cells on the contralateral side of the CNS. This electrotonic coupling between motoneurones is probably important in producing synchronous contraction of the CM and DLM when the animal retracts its head-foot complex during whole-body withdrawal.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3