Spatial re-organisation of cortical microtubules in vivo during polarisation and asymmetric division ofFucuszygotes

Author:

Corellou Florence1,Coelho Susana M. B.1,Bouget François-Yves1,Brownlee Colin2

Affiliation:

1. Station Biologique, UMR 1931 CNRS and Laboratoires Goëmar, 29680 Roscoff, France

2. Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK

Abstract

Fucus zygotes polarise and germinate a rhizoid before their first asymmetrical division. The role of microtubules (MTs) in orienting the first division plane has been extensively studied by immunofluorescence approaches. In the present study, the re-organisation of MT arrays during the development of Fucus zygotes and embryos was followed in vivo after microinjection of fluorescent tubulin. A dynamic cortical MT array that shows dramatic reorganization during zygote polarization was detected for the first time. Randomly distributed cortical MTs were redistributed to the presumptive rhizoid site by the time of polarisation and well before rhizoid germination. The cortical MT re-organisation occurs independently of centrosome separation and nucleation. By the time of mitosis the cortical array depolymerised to cortical foci in regions from which it also reformed following mitosis, suggesting that it is nucleated from cortical sites. We confirm previous indications from immunodetection studies that centrosomal alignment and nuclear rotation occur via MT connexions to stabilised cortical sites and that definitive alignment is post-metaphasic. Finally, we show that cortical MTs align parallel to the growth axis during rhizoid tip growth and our results suggest that they may be involved in regulating rhizoid growth by shaping the rhizoid and containing turgor pressure

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3