The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape

Author:

Smith L.G.1,Hake S.1,Sylvester A.W.1

Affiliation:

1. USDA/UC Berkeley Plant Gene Expression Center, Albany, CA 94710, USA.

Abstract

It is often assumed that in plants, where the relative positions of cells are fixed by cell walls, division orientations are critical for the generation of organ shapes. However, an alternative perspective is that the generation of shape may be controlled at a regional level independently from the initial orientations of new cell walls. In support of this latter view, we describe here a recessive mutation of maize, tangled-1 (tan-1), that causes cells to divide in abnormal orientations throughout leaf development without altering overall leaf shape. In normal plants, leaf cells divide either transversely or longitudinally relative to the mother cell axis; transverse division are associated with leaf elongation and longitudinal divisions with leaf widening. In tan-l mutant leaves, cells in all tissue layers at a wide range of developmental stages divide transversely at normal frequencies, but longitudinal divisions are largely substituted by a variety of aberrantly oriented divisions in which the new cell wall is crooked or curved. Mutant leaves grow more slowly than normal, but their overall shapes are normal at all stages of their growth. These observations demonstrate that the generation of maize leaf shape does not depend on the precise spatial control of cell division, and support the general view that mechanisms independent from the control of cell division orientations are involved in the generation of shape during plant development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3