Affiliation:
1. Department of Genetics and Developmental Biology, Monash University, Clayton, Victoria, Australia.
Abstract
Sector boundary analysis has been used to deduce the number and orientation of cells initiating flower and floral organ development in Arabidopsis thaliana. Sectors were produced in transgenic plants carrying the Ac transposon from maize inserted between the constitutive 35S promoter and the GUS reporter gene. Excision of the transposon results in a blue-staining sector. Plants were chosen in which an early arising sector passed from vegetative regions into the inflorescence and through a mature flower. The range of sector boundary positions seen in mature flowers indicated that flower primordia usually arise from a group of four cells on the inflorescence flank. The radial axes of the mature flower are apparently set by these cells, supporting the concept that they act as a structural template. Floral organs show two patterns of initiation, a leaf-like pattern with eight cells in a row (sepals and carpels), or a shoot-like pattern with four cells in a block (stamens). The petal initiation pattern involved too few cells to allow assignment. The numbers of initiating cells were close to those seen when organ growth commenced in each case, indicating that earlier specification of floral organ development does not occur. By examining sector boundaries in homeotic mutant flowers in which second whorl organs develop as sepal-like organs rather than petals, we have shown that their pattern of origin is position dependent rather than identity dependent.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献