wingless signaling in the Drosophila eye and embryonic epidermis

Author:

Cadigan K.M.1,Nusse R.1

Affiliation:

1. Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305, USA.

Abstract

After the onset of pupation, sensory organ precursors, the progenitors of the interommatidial bristles, are selected in the developing Drosophila eye. We have found that wingless, when expressed ectopically in the eye via the sevenless promoter, blocks this process. Transgenic eyes have reduced expression of acheate, suggesting that wingless acts at the level of the proneural genes to block bristle development. This is in contrast to the wing, where wingless positively regulates acheate to promote bristle formation. The sevenless promoter is not active in the acheate-positive cells, indicating that the wingless is acting in a paracrine manner. Clonal analysis revealed a requirement for the genes porcupine, dishevelled and armadillo in mediating the wingless effect. Overexpression of zeste white-3 partially blocks the ability of wingless to inhibit bristle formation, consistent with the notion that wingless acts in opposition to zeste white-3. Thus the wingless signaling pathway in the eye appears to be very similar to that described in the embryo and wing. The Notch gene product has also been suggested to play a role in wingless signaling (J. P. Couso and A. M. Martinez Arias (1994) Cell 79, 259–72). Because Notch has many functions during eye development, including its role in inhibiting bristle formation through the neurogenic pathway, it is difficult to assess the relationship of Notch to wingless in the eye. However, we present evidence that wingless signaling still occurs normally in the complete absence of Notch protein in the embryonic epidermis. Thus, in the simplest model for wingless signalling, a direct role for Notch is unlikely.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3