Retinal dysplasia and degeneration in RARbeta2/RARgamma2 compound mutant mice

Author:

Grondona J.M.1,Kastner P.1,Gansmuller A.1,Decimo D.1,Chambon P.1,Mark M.1

Affiliation:

1. Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/ULP/College de France, France.

Abstract

The eye is the organ whose development is the most frequently altered in response to maternal vitamin A deficiency [VAD; Warkany, J. and Schraffenberger, S. (1946). Archs Ophthalmol. 35, 150–169]. With the exception of prenatal retinal dysplasia, all the ocular abnormalities of the fetal VAD syndrome are recapitulated in mouse mutants lacking either RARalpha and RARbeta2, RARalpha and RARgamma, RARgamma and RARbeta2, or RXRalpha [Lohnes, D., Mark, M., Mendelsohn, C., Dolle, P., Dierich, A., Gorry, P., Gansmuller, A. and Chambon, P. (1994) Development 120, 2723–2748; Mendelsohn, C., Lohnes, D., Decimo, D., Lufkin, T., LeMeur, M., Chambon, P. and Mark, M. (1994) Development 120, 2749–2771; Kastner, P., Grondona, J. Mark, M., Gansmuller, A., LeMeur, M., Decimo, D., Vonesch, J.L., Dolle, P. and Chambon, P. (1994) Cell 78, 987–1003], thus demonstrating that retinoic acid (RA) is the active vitamin A metabolite during prenatal eye morphogenesis. Whether retinoids are also involved in postnatal eye development could not be investigated, as VAD newborns are not viable and the above RAR double null mutants and RXRalpha null mutants died in utero or at birth. We report here the generation of viable RARbeta2/RARgamma2 double null mutant mice, which exhibit several eye defects. The neural retina of newborn RARbeta2gamma2 mutants is thinner than normal due to a reduced rate of cell proliferation, and from day 4 shows multiple foci of disorganization of its layers. These RARbeta2gamma2 mutants represent the first genetically characterized model of retinal dysplasia and their phenotype demonstrates that RARs, and therefore RA, are required for retinal histogenesis. The RARbeta2gamma2 retinal pigment epithelium (RPE) cells display histological and/or ultrastructural alterations and/or fail to express cellular retinol binding protein I (CRBPI). Taken altogether, the early onset of the RPE histological defects and their striking colocalisation with areas of the neural retina displaying a faulty laminar organization, a reduced neuroblastic proliferation, and a lack of photoreceptor differentiation and/or increased apoptosis, make the RPE a likely target tissue of the RARbeta2gamma2 double null mutation. A degeneration of the adult neural retina, which may similarly be secondary to a defective RPE, is also observed in these mutants, thus demonstrating an essential role of RA in the survival of retinal cells. Moreover, all RARbeta2gamma2 mutants display defects in structures derived from the periocular mesenchyme including local agenesis of the choroid and of the sclera, small eyelids, and a persistence of the primary mesenchymal vitreous body. A majority of the RARbeta2 single null mutants also exhibit this latter defect, thus demonstrating that the RARbeta2 isoform plays a unique role in the formation of the definitive vitreous body.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3