Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos

Author:

Weinberg E.S.1,Allende M.L.1,Kelly C.S.1,Abdelhamid A.1,Murakami T.1,Andermann P.1,Doerre O.G.1,Grunwald D.J.1,Riggleman B.1

Affiliation:

1. Department of Biology, University of Pennsylvania, Philadelphia 19104, USA.

Abstract

We describe the isolation of the zebrafish MyoD gene and its expression in wild-type embryos and in two mutants with altered somite development, no tail (ntl) and spadetail (spt). In the wild-type embryo, MyoD expression first occurs in an early phase, extending from mid-gastrula to just prior to somite formation, in which cells directly adjacent to the axial mesoderm express the gene. In subsequent phases, during the anterior-to-posterior wave of somite formation and maturation, expression occurs within particular regions of each somite. In spt embryos, which lack normal paraxial mesoderm due to incorrect cell migration, early MyoD expression is not observed and transcripts are instead first detected in small groups of trunk cells that will develop into aberrant myotomal-like structures. In ntl embryos, which lack notochords and tails, the early phase of MyoD expression is also absent. However, the later phase of expression within the developing somites appears to occur at the normal time in the ntl mutants, indicating that the presomitogenesis and somitogenesis phases of MyoD expression can be uncoupled. In addition, we demonstrate that the entire paraxial mesoderm of wild-type embryos has the potential to express MyoD when Sonic hedgehog is expressed ubiquitously in the embryo, and that this potential is lost in some of the cells of the paraxial mesoderm lineage in no tail and spadetail embryos. We also show that MyoD expression precedes myogenin expression and follows or is coincident with expression of snaill in some regions that express this gene.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3