Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny

Author:

Kontges G.1,Lumsden A.1

Affiliation:

1. MRC Brain Development Programme, Department of Developmental Neurobiology, UMDS, Guy's Hospital, London, UK.

Abstract

To investigate the influence of hindbrain segmentation on craniofacial patterning we have studied the long term fate of neural crest (NC) subpopulations of individual rhombomeres (r), using quail-chick chimeras. Mapping of all skeletal and muscle connective tissues developing from these small regions revealed several novel features of the cranial neural crest. First, the mandibular arch skeleton has a composite origin in which the proximal elements are r1+r2 derived, whereas more distal ones are exclusively midbrain derived. The most proximal region of the lower jaw is derived from second arch (r4) NC. Second, both the lower jaw and tongue skeleton display an organisation which precisely reflects the rostrocaudal order of segmental crest deployment from the embryonic hindbrain. Third, cryptic intraskeletal boundaries, which do not correspond to anatomical landmarks, form sharply defined interfaces between r1+r2, r4 and r6+r7 crest. Cells that survive the early apoptotic elimination of premigratory NC in r3 and r5 are restricted to tiny contributions within the 2nd arch (r4) skeleton. Fourth, a highly constrained pattern of cranial skeletomuscular connectivity was found that precisely respects the positional origin of its constitutive crest: each rhombomeric population remains coherent throughout ontogeny, forming both the connective tissues of specific muscles and their respective attachment sites onto the neuro- and viscerocranium. Finally, focal clusters of crest cells, confined to the attachment sites of branchial muscles, intrude into the otherwise mesodermal cranial base. In the viscerocranium, an equally strict, rhombomere-specific matching of muscle connective tissues and their attachment sites is found for all branchial and tongue (hypoglossal) muscles. This coherence of segmental crest populations explains how cranial skeletomuscular pattern can be implemented and conserved despite evolutionary changes in the shapes of skeletal elements.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 400 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Congenital ear malformation (CEM);Acta Oto-Laryngologica;2023-12-18

2. Come together over me: Cells that form the dermatocranium and chondrocranium in mice;The Anatomical Record;2023-07-27

3. The Emerging Roles of the Cephalic Neural Crest in Brain Development and Developmental Encephalopathies;International Journal of Molecular Sciences;2023-06-07

4. Pharyngeal Arches, Chapter 1: Normal Development and Derivatives;Journal of Craniofacial Surgery;2023-06-02

5. Embriología del oído externo;EMC - Otorrinolaringología;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3