Affiliation:
1. Department of Cell and Molecular Biology, University of California at Berkeley, 94720, USA. kkroll@bcmp.med.harvard.edu
Abstract
We have developed a simple approach for large-scale transgenesis in Xenopus laevis embryos and have used this method to identify in vivo requirements for FGF signaling during gastrulation. Plasmids are introduced into decondensed sperm nuclei in vitro using restriction enzyme-mediated integration (REMI). Transplantation of these nuclei into unfertilized eggs yields hundreds of normal, diploid embryos per day which develop to advanced stages and express integrated plasmids nonmosaically. Transgenic expression of a dominant negative mutant of the FGF receptor (XFD) after the mid-blastula stage uncouples mesoderm induction, which is normal, from maintenance of mesodermal markers, which is lost during gastrulation. By contrast, embryos expressing XFD contain well-patterned nervous systems despite a putative role for FGF in neural induction.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
523 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献