Drosophila nonmuscle myosin II has multiple essential roles in imaginal disc and egg chamber morphogenesis

Author:

Edwards K.A.1,Kiehart D.P.1

Affiliation:

1. Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.

Abstract

Morphogenesis is characterized by orchestrated changes in the shape and position of individual cells. Many of these movements are thought to be powered by motor proteins. However, in metazoans, it is often difficult to match specific motors with the movements they drive. The nonmuscle myosin II heavy chain (MHC encoded by zipper is required for cell sheet movements in Drosophila embryos. To determine if myosin II is required for other processes, we examined the phenotypes of strong and weak larval lethal mutations in spaghetti squash (sqh), which encodes the nonmuscle myosin II regulatory light chain (RLC). sqh mutants can be rescued to adulthood by daily induction of a sqh cDNA transgene driven by the hsp70 promoter. By transiently ceasing induction of the cDNA, we depleted RLC at specific times during development. When RLC is transiently depleted in larvae, the resulting adult phenotypes demonstrate that RLC is required in a stage-specific fashion for proper development of eye and leg imaginal discs. When RLC is depleted in adult females, oogenesis is reversibly disrupted. Without RLC induction, developing egg chambers display a succession of phenotypes that demonstrate roles for myosin II in morphogenesis of the interfollicular stalks, three morphologically and mechanistically distinct types of follicle cell migration, and completion of nurse cell cytoplasm transport (dumping). Finally, we show that in sqh mutant tissues, MHC is abnormally localized in punctate structures that do not contain appreciable amounts of filamentous actin or the myosin tail-binding protein p127. This suggests that sqh mutant phenotypes are chiefly caused by sequestration of myosin into inactive aggregates. These results show that myosin II is responsible for a surprisingly diverse array of cell shape changes throughout development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3