The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis

Author:

Laux T.1,Mayer K.F.1,Berger J.1,Jurgens G.1

Affiliation:

1. Lehrstuhl fur Genetik, Ludwig-Maximilian-Universitat Munchen, Germany.

Abstract

Self perpetuation of the shoot meristem is essential for the repetitive initiation of shoot structures during plant development. In Arabidopsis shoot meristem maintenance is disrupted by recessive mutations in the WUSCHEL (WUS) gene. The defect is evident at all developmental stages and is restricted to shoot and floral meristems, whereas the root meristem is not affected. wus mutants fail to properly organize a shoot meristem in the embryo. Postembryonically, defective shoot meristems are initiated repetitively but terminate prematurely in aberrant flat structures. In contrast to wild-type shoot meristems, primordia initiation occurs ectopically across mutant apices, including the center, and often new shoot meristems instead of organs are initiated. The cells of wus shoot apices are larger and more vacuolated than wild-type shoot meristem cells. wus floral meristems terminate prematurely in a central stamen. Double mutant studies indicate that the number of organ primordia in the center of wus flowers is limited, irrespective of organ identity and we propose that meristem cells are allocated into floral whorl domains in a sequential manner. WUS activity also appears to be required for the formation of supernumerary organs in the center of agamous, superman or clavata1 flowers, suggesting that the WUS gene acts upstream of the corresponding genes. Our results suggest that the WUS gene is specifically required for central meristem identity of shoot and floral meristems to maintain their structural and functional integrity.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 565 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3