Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells

Author:

Newfeld S.J.1,Chartoff E.H.1,Graff J.M.1,Melton D.A.1,Gelbart W.M.1

Affiliation:

1. Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

Abstract

The proteins necessary for signal transduction in cells responding to ligands of the TGF-beta family are largely unknown. We have previously identified Mad (Mothers against dpp), a gene that interacts with the TGF-beta family member encoded by decapentaplegic (dpp) in Drosophila. Assay of Mad's role in the DPP-dependent events of embryonic midgut development demonstrates that Mad is required for any response of the visceral mesoderm or endoderm to DPP signals from the visceral mesoderm. Replacement of the normal DPP promoter with a heterologous (hsp70) promoter fails to restore DPP-dependent responses in Mad mutant midguts. Experiments utilizing Mad transgenes regulated by tissue-specific promoters show that MAD is required specifically in cells responding to DPP. Immunohistochemical studies localize MAD to the cytoplasm in all tissues examined. Experiments in Xenopus embryos demonstrate that Drosophila MAD can function in the signaling pathway of BMP-4, a vertebrate homolog of dpp. Based on these results, we propose that Mad is a highly conserved and essential element of the DPP signal transduction pathway.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3