Hoxb-13: a new Hox gene in a distant region of the HOXB cluster maintains colinearity

Author:

Zeltser L.1,Desplan C.1,Heintz N.1

Affiliation:

1. Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA.

Abstract

The Hox genes are involved in patterning along the A/P axes of animals. The clustered organization of Hox genes is conserved from nematodes to vertebrates. During evolution, the number of Hox genes within the ancestral complex increased, exemplified by the five-fold amplification of the AbdB-related genes, leading to a total number of thirteen paralogs. This was followed by successive duplications of the cluster to give rise to the four vertebrate HOX clusters. A specific subset of paralogs was subsequently lost from each cluster, yet the composition of each cluster was likely conserved during tetrapod evolution. While the HOXA, HOXC and HOXD clusters contain four to five AbdB-related genes, only one gene (Hoxb-9) is found in the HOXB complex. We have identified a new member of paralog group 13 in human and mouse, and shown that it is in fact Hoxb-13. A combination of genetic and physical mapping demonstrates that the new gene is found approx. 70 kb upstream of Hoxb-9 in the same transcriptional orientation as the rest of the cluster. Despite its relatively large distance from the HOX complex, Hoxb-13 exhibits temporal and spatial colinearity in the main body axis of the mouse embryo. The onset of transcription occurs at E9.0 in the tailbud region. At later stages of development, Hoxb-13 is expressed in the tailbud and posterior domains in the spinal cord, digestive tract and urogenital system. However, it is not expressed in the secondary axes such as the limbs and genital tubercle. These results indicate that the 5′ end of the HOXB cluster has not been lost and that at least one member exists and is highly conserved among different vertebrate species. Because of its separation from the complex, Hoxb-13 may provide an important system to dissect the mechanism(s) responsible for the maintenance of colinearity.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3