Regulation and function of transcription factor GATA-1 during red blood cell differentiation

Author:

Briegel K.1,Bartunek P.1,Stengl G.1,Lim K.C.1,Beug H.1,Engel J.D.1,Zenke M.1

Affiliation:

1. Max-Delbruck-Center for Molecular Medicine, MDC, Berlin, Germany.

Abstract

The tissue-specific transcription factor GATA-1 is a key regulator of red blood cell differentiation. One seemingly contradictory aspect of GATA-1 function is that, while it is abundant in erythroid progenitor cells prior to the onset of overt differentiation, it does not significantly activate known GATA-1 target genes in those cells. To investigate the mechanisms underlying GATA-1 function during the transition from early to late erythropoiesis, we have examined its expression and activity in normal avian erythroid progenitor cells before and after induction of differentiation. In these primary progenitor cells, GATA-1 protein was predominantly located in the cytoplasm, while induction of differentiation caused its rapid relocalization to the nucleus, suggesting that nuclear translocation constitutes an important regulatory step in GATA-1 activation. As an alternative way of addressing the same question, we also ectopically expressed a GATA-1/estrogen receptor fusion protein (GATA-1/ER) in red blood cell progenitors, where nuclear translocation of, and transcriptional activation by, this hybrid factor are conditionally controlled by estrogen. We found that hormone-activated GATA-1/ER protein accelerated red blood cell differentiation, and concomitantly suppressed cell proliferation. These phenotypic effects were accompanied by a simultaneous suppression of c-myb and GATA-2 transcription, two genes thought to be involved in the proliferative capacity of hematopoietic progenitor cells. Thus, GATA-1 appears to promote differentiation in committed erythroid progenitor cells both by inducing differentiation-specific genes and by simultaneously suppressing genes involved in cell proliferation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3