Titin force is enhanced in actively stretched skeletal muscle

Author:

Powers Krysta1,Schappacher-Tilp Gudrun2,Jinha Azim1,Leonard Tim1,Nishikawa Kiisa3,Herzog Walter1

Affiliation:

1. University of Calgary, Canada;

2. Karl-Franzens-University Graz, Austria;

3. Northern Arizona University, United States

Abstract

Abstract The sliding filament theory of muscle contraction is widely accepted as the means by which muscles generate force during activation. Within the constraints of this theory, isometric, steady-state force produced during muscle activation is proportional to the amount of filament overlap. Previous studies from our laboratory demonstrated enhanced titin-based force in myofibrils that were actively stretched to lengths which exceeded filament overlap. This observation cannot be explained by the sliding filament theory. The aim of the present study was to further investigate the enhanced state of titin during active stretch. Specifically, we confirm that this enhanced state of force is observed in a mouse model and quantify the contribution of calcium to this force. Titin-based force was increased by up to four times that of passive force during active stretch of isolated myofibrils. Enhanced titin-based force has now been demonstrated in two distinct animal models, suggesting that modulation of titin-based force during active stretch is an inherent property of skeletal muscle. Our results also demonstrated that 15% of titin’s enhanced state can be attributed to direct calcium effects on the protein, presumably a stiffening of the protein upon calcium binding to the E-rich region of the PEVK segment and selected Ig domain segments. We suggest that the remaining unexplained 85% of this extra force results from titin binding to the thin filament. With this enhanced force confirmed in the mouse model, future studies will aim to elucidate the proposed titin-thin filament interaction in actively stretched sarcomeres.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3