Alkaline tide and nitrogen conservation after feeding in an elasmobranch(Squalus acanthias)

Author:

Wood Chris M.123,Kajimura Makiko13,Mommsen Thomas P.34,Walsh Patrick J.23

Affiliation:

1. Department of Biology, McMaster University, 1280 Main St West, Hamilton,Ontario, Canada L8S 4K1

2. Rosenstiel School of Marine and Atmospheric Sciences, University of Miami,Miami, Florida 33149, USA

3. Bamfield Marine Sciences Centre, 100 Pachena Drive, Bamfield, British Columbia, Canada V0R 1B0

4. Department of Biology, University of Victoria, Victoria, British Columbia,Canada V8W 2N5

Abstract

SUMMARYWe investigated the consequences of feeding for acid–base balance,nitrogen excretion, blood metabolites and osmoregulation in the Pacific spiny dogfish. Sharks that had been starved for 7 days were surgically fitted with indwelling stomach tubes for gastric feeding and blood catheters for repetitive blood sampling and were confined in chambers, allowing measurement of ammonia-N and urea-N fluxes. The experimental meal infused via the stomach tube consisted of flatfish muscle (2% of body mass) suspended in saline (4% of body mass total volume). Control animals received only saline(4% of body mass). Feeding resulted in a marked rise in both arterial and venous pH and HCO3– concentrations at 3–9 h after the meal, with attenuation by 17 h. Venous ṖO2 also fell. As there were negligible changes in ṖCO2,the response was interpreted as an alkaline tide without respiratory compensation, associated with elevated gastric acid secretion. Urea-N excretion, which comprised >90% of the total, was unaffected, while ammonia-N excretion was very slightly elevated, amounting to <3% of the total-N in the meal over 45 h. Plasma ammonia-N rose slightly. Plasma urea-N,TMAO-N and glucose concentrations remained unchanged, while free amino acid and β-hydroxybutyrate levels exhibited modest declines. Plasma osmolality was persistently elevated after the meal relative to controls, partially explained by a significant rise in plasma Cl–. This marked post-prandial conservation of nitrogen is interpreted as reflecting the needs for urea synthesis for osmoregulation and protein growth in animals that are severely N-limited due to their sporadic and opportunistic feeding lifestyle in nature.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3