Volumetric and ionic responses of goldfish hepatocytes to anisotonic exposure and energetic limitation

Author:

Espelt M. V.1,Mut P. N.1,Amodeo G.2,Krumschnabel G.3,Schwarzbaum P. J.1

Affiliation:

1. Instituto de Química y Fisicoquímica Biológicas(Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires,C1113AAD Buenos Aires, Argentina

2. Laboratorio de Biomembranas (Facultad de Medicina), Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina

3. Institut für Zoologie, Abteilung für Ökophysiologie,Universität Innsbruck, A-6020, Austria

Abstract

SUMMARYThe relationship between cell volume and K+ transmembrane fluxes of goldfish (Carassius auratus) hepatocytes exposed to anisotonic conditions or energetic limitation was studied and compared with the response of hepatocytes from trout (Oncorhynchus mykiss) and rat (Rattus rattus). Cell volume was studied by video- and fluorescence microscopy,while K+ fluxes were assessed by measuring unidirectional 86Rb+ fluxes.In trout and rat hepatocytes, hyposmotic (180 mosmoll-1)exposure at pH 7.45 caused cell swelling followed by a regulatory volume decrease (RVD), a response reported to be mediated by net efflux of KCl and osmotically obliged water. By contrast, goldfish hepatocytes swelled but showed no RVD under these conditions. Although in goldfish hepatocytes a net(86Rb+)K+ efflux could be activated by N-ethylmaleimide, this flux was not, or only partially, activated by hyposmotic swelling (120-180 mosmoll-1).Blockage of glycolysis by iodoacetic acid (IAA) did not alter cell volume in goldfish hepatocytes, whereas in the presence of cyanide (CN-),an inhibitor of oxidative phosphorylation, or CN- plus IAA(CN-+IAA), cell volume decreased by 3-7%. Although in goldfish hepatocytes, energetic limitation had no effect on(86Rb+)K+ efflux,(86Rb+)K+ influx decreased by 57-66% in the presence of CN- and CN-+IAA but was not significantly altered by IAA alone. Intracellular K+ loss after 20 min of exposure to CN- and CN-+IAA amounted to only 3% of the total intracellular K+.Collectively, these observations suggest that goldfish hepatocytes, unlike hepatocytes of anoxia-intolerant species, avoid a decoupling of transmembrane K+ fluxes in response to an osmotic challenge. This may underlie both the inability of swollen cells to undergo RVD but also the capability of anoxic cells to maintain intracellular K+ concentrations that are almost unaltered, thereby prolonging cell survival.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3