TAIL MUSCLE ACTIVITY PATTERNS IN WALKING AND FLYING PIGEONS (COLUMBA LIVIA)

Author:

Gatesy S. M.,Dial K. P.

Abstract

The electrical activity of major caudal muscles of the pigeon (Columba livia) was recorded during five modes of aerial and terrestrial locomotion. Tail muscle electromyograms were correlated with movement using high-speed cinematography and compared to activity in selected muscles of the wings, legs and trunk. During walking, the pectoralis and most tail muscles are normally inactive, but levator muscle activity alternates with the striding legs. In flight, caudal muscles are phasically active with each wingbeat and undergo distinct changes in electromyographic pattern between liftoff, takeoff, slow level flapping and landing modes. The temporal flexibility of tail muscle activity differs significantly from the stereotypic timing of wing muscles in pigeons performing the same flight modes. These neural programs may represent different solutions to the control of flight surfaces in the rapidly oscillating wing and the relatively stationary caudal skeleton. Birds exhibit a novel alliance of tail and forelimb use during aerial locomotion. We suggest that there is evidence of anatomical and functional decoupling of the tail from adjacent hindlimb and trunk muscles during avian evolution to facilitate its specialization for rectricial control in flight.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Bionic Morphing Tail Mechanism for Aerial Vehicles;2024 6th International Conference on Reconfigurable Mechanisms and Robots (ReMAR);2024-06-23

2. Avian Locomotion: Flying, Running, Walking, Climbing, Swimming, and Diving;In a Class of Their Own;2023

3. Aerodynamic performance of a bird-inspired morphing tail;Journal of Biomechanical Science and Engineering;2023

4. A review of avian-inspired morphing for UAV flight control;Progress in Aerospace Sciences;2022-07

5. Form and function in the avian pelvis;Journal of Morphology;2022-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3