Cytosolic, nuclear and nucleolar localization signals determine subcellular distribution and activity of the NF-κB inducing kinase NIK

Author:

Birbach Andreas1,Bailey Shannon T.2,Ghosh Sankar2,Schmid Johannes A.1

Affiliation:

1. Department of Vascular Biology and Thrombosis Research, University of Vienna Medical School and Competence Center Bio-Molecular Therapeutics, Schwarzspanierstr. 17, 1090 Vienna, Austria

2. Room S620, Section of Immunobiology, Yale University Medical School, 300 Cedar Street, New Haven, CT 06520, USA

Abstract

It has been shown previously that the transcription factor NF-κB and its inhibitor IκBα shuttle constitutively between cytosol and nucleus. Moreover, we have recently demonstrated nucleocytoplasmic shuttling of the NF-κB-inducing kinase NIK, a component of the NF-κB pathway, which is essential for lymph node development and B-cell function. Here we show that nuclear NIK also occurs in nucleoli and that this localization is mediated by a stretch of basic amino acids in the N-terminal part of the protein (R143-K-K-R-K-K-K149). This motif is necessary and sufficient for nucleolar localization of NIK, as judged by nuclear localization of mutant versions of the full-length protein and the fact that coupling of these seven amino acids to GFP also leads to accumulation in nucleoli. Using fluorescence loss in photobleaching (FLIP) and fluorescence recovery after photobleaching (FRAP) approaches, we demonstrate a dynamic distribution between nucleoli and nucleoplasm and a high mobility of NIK in both compartments. Together with the nuclear export signal in the C-terminal portion of NIK that we have also characterized in detail, the nuclear/nucleolar targeting signals of NIK mediate dynamic circulation of the protein between the cytoplasmic, nucleoplasmic and nucleolar compartments. We demonstrate that nuclear NIK is capable of activating NF-κB and that this effect is diminished by nucleolar localization. Thus, subcellular distribution of NIK to different compartments might be a means of regulating the function of this kinase.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3