The cataract-inducing S50P mutation in Cx50 dominantly alters the channel gating of wild-type lens connexins

Author:

DeRosa Adam M.1,Xia Chun-Hong2,Gong Xiaohua2,White Thomas W.1

Affiliation:

1. Department of Physiology and Biophysics and the Graduate Program in Genetics, State University of New York, Stony Brook, NY 11794, USA

2. School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, CA 94720, USA

Abstract

Mutations within connexin50 (Cx50) have been linked to various cataract phenotypes. To determine the mechanism behind cataract formation we used the paired Xenopus oocyte system in conjunction with transfected HeLa cells and genetically engineered mouse models to examine the functional characteristics of gap junctions in which a cataract-causing mutant of Cx50 (hereafter referred to as Cx50-S50P) is expressed. Channels comprising Cx50-S50P subunits alone failed to induce electrical coupling. However, the mixed expression of Cx50-S50P and wild-type subunits of either Cx50 or Cx46 – to create heteromeric gap junctions – resulted in functional intercellular channels with altered voltage-gating properties compared with homotypic wild-type channels. Additionally, immunofluorescence microscopy showed that channels of Cx50-S50P subunits alone failed to localize to the plasma membrane – unlike channels composed of Cx46 subunits, which concentrated at cell-cell appositions. Cx50-S50P colocalized with wild-type Cx46 in both transfected HeLa cells in vitro and mouse lens sections in vivo. Taken together, these data define the electrophysiological properties and intracellular targeting of gap junctions formed by the heteromeric combination of Cx50 or Cx46 and Cx50-S50P mutant proteins. Additionally, mixed channels displayed significantly altered gating properties, a phenomenon that may contribute to the cataract that is associated with this mutation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3