Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential

Author:

Meng Jianghui1,Wang Jiafu1,Lawrence Gary1,Dolly J. Oliver1

Affiliation:

1. International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland

Abstract

Calcitonin-gene-related peptide (CGRP), a potent vasodilator that mediates inflammatory pain, is elevated in migraine; nevertheless, little is known about its release from sensory neurons. In this study, CGRP was found to occur in the majority of neurons from rat trigeminal ganglia, together with the three exocytotic SNAREs [SNAP25, syntaxin 1 and the synaptobrevin (Sbr, also known as VAMP) isoforms] and synaptotagmin. Ca2+-dependent CGRP release was evoked with K+-depolarisation and, to lower levels, by capsaicin or bradykinin from neurons that contain the vanilloid receptor 1 and/or bradykinin receptor 2. Botulinum neurotoxin (BoNT) type A cleaved SNAP25 and inhibited release triggered by K+ > bradykinin >> capsaicin. Unlike BoNT type D, BoNT type B did not affect exocytosis, even though the neurons possess its receptor and Sbr II and Sbr III got proteolysed (I is resistant in rat) but, in mouse neurons, it additionally cleaved Sbr I and blocked transmitter release. Sbr I and II were found in CGRP-containing vesicles, and each was shown to separately form a SNARE complex. These new findings, together with punctate staining of Sbr I and CGRP in neurites, implicate isoform Sbr I in exocytosis from large dense-core vesicles together with SNAP25 (also, probably, syntaxin 1 because BoNT type C1 caused partial cleavage and inhibition); this differs from Sbr-II-dependent release of transmitters from small synaptic vesicles. Such use of particular Sbr isoform(s) by different neurons raises the functional implications for other cells previously unrecognised.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3