Auto- and heterotrophic responses of the coral Porites lutea to large amplitude internal waves

Author:

Pacherres Cesar O.1,Schmidt Gertraud M.2,Richter Claudio2

Affiliation:

1. Cientifica del Sur University;

2. Alfred Wegener Institute

Abstract

Summary Large amplitude internal waves (LAIW) cause frequent and severe changes in the physico-chemical environment of Andaman Sea coral reefs and are a potentially important source of disturbance for corals. To explore the coral response to LAIW, prey capture disposition and photosynthesis were investigated in relation to changes in seawater temperature, pH, flow speed, and food availability in LAIW simulation studies under controlled laboratory conditions, using Porites lutea as a model organism. Although food presence stimulated polyp expansion, we found an overriding effect of low temperature (19°C) causing retraction of the coral polyps into their calices, particularly when pH was altered concomitantly. Decreases in pH alone, however, caused the expansion of the polyps. The exposure history of the colonies played a crucial role in coral responses: prior field exposure to LAIW yielded lower retraction levels than in LAIW-inexperienced corals, suggesting acclimatization. Low temperature (19°C) exposure did not seem to influence the photosynthetic performance, but LAIW-experienced corals showed higher values of maximum dark adapted quantum yield (Fv/Fm) of photosystem II (PSII) than LAIW-inexperienced controls. Collectively, these data suggest that P. lutea, the dominant hermatypic coral in the Andaman Sea, can acclimatize to extreme changes in its abiotic environment by modulating its mixotrophic nutrition through polyp expansion and potential feeding as well as its photosynthetic efficiency.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3