Gsk3β/PKA and Gli1 regulate the maintenance of neural progenitors at the midbrain-hindbrain boundary in concert with E(Spl) factor activity

Author:

Ninkovic Jovica1,Stigloher Christian1,Lillesaar Christina1,Bally-Cuif Laure1

Affiliation:

1. Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Department of Zebrafish Neurogenetics, Institute of Developmental Genetics, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany.

Abstract

Neuronal production in the midbrain-hindbrain domain (MH) of the vertebrate embryonic neural tube depends on a progenitor pool called the `intervening zone' (IZ), located at the midbrain-hindbrain boundary. The progressive recruitment of IZ progenitors along the mediolateral (future dorsoventral)axis prefigures the earlier maturation of the MH basal plate. It also correlates with a lower sensitivity of medial versus lateral IZ progenitors to the neurogenesis inhibition process that maintains the IZ pool. This role is performed in zebrafish by the E(Spl) factors Her5 and Her11, but the molecular cascades cooperating with Her5/11, and those accounting for their reduced effect in the medial IZ, remain unknown. We demonstrate here that the kinases Gsk3β and cAMP-dependent protein kinase A (PKA) are novel determinants of IZ formation and cooperate with E(Spl) activity in a dose-dependent manner. Similar to E(Spl), we show that the activity of Gsk3β/PKA is sensed differently by medial versus lateral IZ progenitors. Furthermore, we identify the transcription factor Gli1, expressed in medial IZ cells, as an antagonist of E(Spl) and Gsk3β/PKA, and demonstrate that the neurogenesis-promoting activity of Gli1 accounts for the reduced sensitivity of medial IZ progenitors to neurogenesis inhibitors and their increased propensity to differentiate. We also show that the expression and activity of Gli1 in this process are,surprisingly, independent of Hedgehog signaling. Together, our results suggest a model in which the modulation of E(Spl) and Gsk3β/PKA activities by Gli1 underlies the dynamic properties of IZ maintenance and recruitment.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference89 articles.

1. Agathocleous, M., Locker, M., Harris, W. A. and Perron, M.(2007). A general role of hedgehog in the regulation of proliferation. Cell Cycle6, 156-159.

2. Bae, Y. K., Shimizu, T. and Hibi, M. (2005). Patterning of proneuronal and inter-proneuronal domains by hairy- and enhancer of split-related genes in zebrafish neuroectoderm. Development132,1375-1385.

3. Bally-Cuif, L. and Hammerschmidt, M. (2003). Induction and patterning of neuronal development, and its connection to cell cycle control. Curr. Opin. Neurobiol.13, 16-25.

4. Bally-Cuif, L., Goridis, C. and Santoni, M. J.(1993). The mouse NCAM gene displays a biphasic expression pattern during neural tube development. Development117,543-552.

5. Barresi, M. J., Stickney, H. L. and Devoto, S. H.(2000). The zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity. Development127,2189-2199.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3