Role of microtubules and tea1p in establishment and maintenance of fission yeast cell polarity

Author:

Sawin Kenneth E.1,Snaith Hilary A.1

Affiliation:

1. Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, Michael Swann Building, University of Edinburgh, Edinburgh, EH9 3JR, UK

Abstract

Microtubules and the protein tea1p have important roles in regulating cell polarity in the fission yeast Schizosaccharomyces pombe. Here, using combinations of drugs, environmental perturbations and genetic mutants, we demonstrate that once a cell polarity axis is established, microtubules have at best a minor role in maintaining the cortical actin cytoskeleton and the rate and direction of cell growth. In addition, we find that after perturbations that disrupt cell polarity and the cortical actin cytoskeleton, microtubules are not required for re-establishment of polarity per se. However, after such perturbations, the distribution of cytoplasmic microtubules plays an important role in dictating the position of sites of polarity re-establishment. Furthermore, this influence of microtubule distribution on site selection during polarity re-establishment requires the presence of tea1p, suggesting that tea1p is crucial for coupling microtubule distribution to the regulation of cell polarity. Our results suggest a model in which, at the cellular level, two distinct and separable mechanisms contribute to how tea1p regulates site selection during polarity re-establishment. First, tea1p remaining at cell tips after cortical depolarization can serve as a cortical landmark for microtubule-independent site selection; second, tea1p newly targeted to the cell cortex by association with microtubules can promote the formation of polarity axes de novo.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3