Heart Disease Prediction under Machine Learning and Association Rules under Neutrosophic Environment

Author:

Ahmed A. El-Douh ,SongFeng Lu ,Ahmed Abdelhafeez ,Ahmed M. Ali ,Alber S. Aziz

Abstract

Early identification and precise prediction of heart disease have important implications for preventative measures and better patient outcomes since cardiovascular disease is a leading cause of death globally. By analyzing massive amounts of data and seeing patterns that might aid in risk stratification and individualized treatment planning, machine learning algorithms have emerged as valuable tools for heart disease prediction. Predictive modeling is considered for many forms of heart illness, such as coronary artery disease, myocardial infarction, heart failure, arrhythmias, and valvar heart disease. Resource allocation, preventative care planning, workflow optimization, patient involvement, quality improvement, risk-based contracting, and research progress are all discussed as management implications of heart disease prediction. The effective application of machine learning-based cardiac disease prediction models requires collaboration between healthcare organizations, providers, and data scientists. This paper used three tools such as the neutrosophic analytical hierarchy process (AHP) as a feature selection, association rules, and machine learning models to predict heart disease. The neutrosophic AHP method is used to compute the weights of features and select the highest features. The association rules are used to give rules between values in all datasets. Then, we used the neutrosophic AHP as feature selection to select the best feature to input in machine learning models. We used nine machine learning models to predict heart disease. We obtained the random forest (RF) and decision tree (DT) have the highest accuracy with 100%, followed by Bagging, k-nearest neighbors (KNN), and gradient boosting have 99%, 98%, and 97%, then AdaBoosting has 89%, then logistic regression and Naïve Bayes have 84%, then the least accuracy is support vector machine (SVM) has 68%.

Publisher

University of New Mexico

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3