Degradation of malachite green dye by capping polyvinylpyrrolidone and Azadirachta indica in hematite phase of Ni doped Fe2O3 nanoparticles via co-precipitation method

Author:

Thakur Naveen,Kumar Pankaj,Tapwal Ashwani,Jeet Kamal

Abstract

In the present research, a chemical co-precipitation approach has been used to approach the synthesis, characterization, and photocatalytic applicability of Ni-doped α-Fe2O3 (hematite) nanoparticles. Biosynthesized iron oxide nanoparticles (IONPs) were successfully synthesized using a non-toxic leaf extract of the Azadirachta indica (AI) plant (neem) as a reducing and stabilizing agent. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, FT-IR spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and vibrating sample magnetometer (VSM) have all been used to examine the synthesized materials. All of the produced NPs contain only the nanocrystalline hematite phase, according to XRD measurements. The morphology studies of the Ni-doping hematite nanoparticles, as demonstrated by TEM and SEM. The phase purity and phonon modes of the prepared nanoparticles are confirmed by Raman spectroscopy. The UV-Vis absorption tests show also that value of the band gap increases together with the reduction in particle size, going from 2.26 eV for chemical α-Fe2O3 to 2.5 eV for green Ni-doped α-Fe2O3 nanoparticles. Additionally, it was clear from the magnetic characteristics that all of the samples behaved ferromagnetically at ambient temperatures. On the other side, malachite green (MG) dye was used as a surrogate industrial wastewater dye in order to study the photocatalytic efficiency of Ni-doped α-Fe2O3 particles. The pure/green Ni-doped α-Fe2O3 NPs showed that after 70 minutes of exposure, 92% of the MG had become discolored.

Publisher

Eurasia Academic Publishing Group

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3