Applications of graphitic carbon nitride-based S-scheme heterojunctions for environmental remediation and energy conversion

Author:

Sudhaik Anita,Sonu ,Hasija Vasudha,Selvasembian Rangabhashiyam,Ahamad Tansir,Singh Arachana,Khan Aftab Aslam Parwaz,Raizada Pankaj,Singh Pardeep

Abstract

The contemporary era's top environmental problems include the lack of energy, recycling of waste resources, and water pollution. Due to the speedy growth of modern industrialization, the utilization of non-renewable sources has increased rapidly, which has caused many serious environmental and energy issues. In photocatalysis, as a proficient candidate, g-C3N4 (metal-free polymeric photocatalyst) has gained much attention due to its auspicious properties and excellent photocatalytic performance. But, regrettably, the quick recombination of photoinduced charge carriers, feeble redox ability, and inadequate visible light absorption are some major drawbacks of g-C3N4 that hamper its photocatalytic ability. Henceforth, these significant limitations can be solved by incorporating modification strategies. Among all modification techniques, the amalgamation of g-C3N4 with two or more photocatalytic semiconducting materials via heterojunction formation is more advantageous. In this review, we have discussed various modification strategies, including conventional, Z-scheme and S-scheme heterojunctions. S-scheme heterojunction is consideredan efficient and profitable charge transferal pathway due to the excellent departure and transferal of photoexcited charge carriers with outstanding redox ability. Consequently, the current review is focused on various photocatalytic applications of S-scheme-based g-C3N4 photocatalysts in pollutant degradation, H2 production, and CO2 reduction.

Publisher

Eurasia Academic Publishing Group

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3