CO2 electro/photocatalytic reduction using nanostructured ZnO and silicon-based materials: A short review

Author:

Galdámez-Martínez Andrés,Dutt Ateet

Abstract

Reducing CO2 net emissions is one of the most pressing goals in tackling the current global warming emergency. Therefore, the development of carbon recycling strategies has resulted in the application of heterogeneous catalysts toward the electro/photocatalysis reduction of CO2 into hydrocarbons with potential reusability. Their morphology is among the properties that affect the performance and selectivity of catalysts towards this reaction. Nanostructuring methods offer popular strategies for catalytic applications since they allow an increase in the area/volume ratio and versatile control over surface physicochemical properties. In this review, we summarize studies that report the use of versatile synthesis techniques for obtaining nanostructured metallic and semiconductor materials with application in the electro/photocatalytic reduction of CO2. Enhancing mechanisms to the catalytic CO2 reduction yield, such as improved charge carrier separation efficiency, defect engineering, active site concentration, and localized plasmonic behavior, are described in conjunction with the control over the morphologies of the nanostructured platforms. Special attention is given to ZnO and silicon-based matrices as candidates for developing abundant and non-toxic catalytic materials. Therefore, this work represents a guide to the efforts made to design electro/photocatalytic systems that can contribute significantly to this field.

Publisher

Eurasia Academic Publishing Group

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3