Improving the Stability of Ink-Jet Printed Red QLEDs By Optimizing The Device Fabrication Process

Author:

Diker Halide,Sevim Unluturk Secil,Ozcelik Serdar,Varlikli Canan

Abstract

Red-light emitting Cadmium Sulfide0.8 Selenide0.2 /Zinc Sulfide (CdS0.8Se0.2/ZnS) based quantum dots (QDs) were synthesized by hot injection method and utilized as the emissive layer in the quantum dot light emitting diode (QLED) with the device structure of Indium Tin Oxide/Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate /Polyvinylcarbazole(or Poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidin)/QD/ZincOxide/LithiumFluoride/ Aluminum [ITO/ PEDOT: PSS/PVK(or p-TPD)/QD/ZnO/LiF/Al]. QD inks were formulated and prepared in octane: decane; (1/1, v/v) solvent system and mixed with the nonionic surfactant, TritonX-100, to make the QD inks inkjet printable. In addition to the inkjet printing technique, spin coating was also employed to form the QD emissive layer for comparing device performance. Compared to the p-TPD-based QLED device, the PVK-based device fabricated via spin coating exhibited ~6-fold higher performance in terms of luminance and efficiency values. In the case of using the ink-jet printer, ~2-fold higher maximum luminance value and slightly lower external quantum efficiency at the lower current density region were obtained in the p-TPD-based device. Furthermore, compared to the PVK layer, the p-TPD layer provided higher device stability regardless of the coating method at the higher current density regions. We suggest that the coating method applied and the choice of hole transport layer (HTL) materials may control the device parameters.

Publisher

Eurasia Academic Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3