When did the Indus River of South-Central Asia take on its “modern” drainage configuration?

Author:

Najman Yani1,Zhuang Guangsheng12,Carter Andrew3,Gemignani Lorenzo4,Millar Ian5,Wijbrans Jan4

Affiliation:

1. 1Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

2. 2Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA

3. 3Department of Earth and Planetary Sciences, Birkbeck College, University of London, London WC1E 7HX, UK

4. 4Faculty of Earth and Life Science, Vrije Universiteit, 1081 HV Amsterdam, Netherlands

5. 5Natural Environment Research Council, Isotope Geosciences Lab, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK

Abstract

For sedimentary archives to be used as a record of hinterland evolution, the factors affecting the archive must be known. In addition to tectonics, a number of factors, such as changes in climate and paleodrainage, as well as the degree of diagenesis, influence basin sediments. The Indus River delta-fan system of South-Central Asia records a history of Himalayan evolution, and both the onshore and offshore sedimentary repositories have been studied extensively to research orogenesis. However, a number of unknowns remain regarding this system. This paper seeks to elucidate the paleodrainage of the Indus River, in particular when it took on its modern drainage configuration with respect to conjoinment of the main Himalayan (Punjabi) tributary system with the Indus trunk river. We leverage the fact that the Punjabi tributary system has a significantly different provenance signature than the main trunk Indus River, draining mainly the Indian plate. Therefore, after the Punjabi tributary system joined the Indus River, the proportion of Indian plate material in the repositories downstream of the confluence should have been higher than in the upstream repository. We compared bulk Sr-Nd data and detrital zircon U-Pb data from the Cenozoic upstream peripheral foreland basin and downstream Indus delta and Indus Fan repositories. We determined that throughout Neogene times, repositories below the confluence had a higher proportion of material from the Indian plate than those above the confluence. Therefore, we conclude that the Indus River took on its current configuration, with the Punjabi tributary system draining into the Indus trunk river in the Paleogene, early in the history of the orogen. The exact time when the tributary system joined the Indus should correlate with a shift to more Indian plate input in the downstream repositories only. While the upstream repository records no change in Indian plate input from Eocene to Neogene times, a shift to increased material from the Indian plate occurs at the Eocene−Oligocene boundary in the delta, but sometime between 50 Ma and 40 Ma in the fan. Though further work is required to understand the discrepancy between the two downstream repositories, we can conclude that the tributary system joined the Indus trunk river at or before the start of the Oligocene.

Publisher

Geological Society of America

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3