Affiliation:
1. Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221, USA
Abstract
Bentonite beds, which are clay deposits produced by the submarine alteration of volcanic tephra, preserve millions of years of volcanic products linked to magmatic systems for which records are otherwise lost through erosion and alteration. Cretaceous strata from the Bighorn Basin, Wyoming, and southwestern South Dakota contain bentonites that originated from arc magmatism produced by subduction of the Farallon plate. We analyzed the bulk major- and trace-element geochemistry, and the 87Sr/86Sr (n = 87) and 143Nd/144Nd (n = 26) isotopic compositions of individual bentonite beds from these areas spanning 40 m.y. of volcanism to recover signals of magmatic processes and to attempt to trace bentonite geochemical and isotopic signatures to contemporaneous Cordilleran plutonic rocks. Using multiple immobile elements (e.g., Zr, TiO2, Nb, Ta, and rare earth elements), distinct temporal trends show variations in the effects of mineral fractionation and changes in crustal thickness. Bentonite Sr and Nd isotopic compositions allow ash beds to be correlated with specific batholithic complexes in Idaho and western Montana. With this data set, we observed the following: (1) The volcanic arc migrated across the 0.706 isopleth between 115 and 105 Ma; (2) between 105 and 95 Ma, magmatism stalled in central Idaho and was supported through significant MASH (mixing-assimilation-storage-homogenization) processing; (3) by 85 Ma, a shallowing subduction angle resulted in the eastward migration of the volcanic front into western Montana while volcanism in Idaho diminished; and (4) around 75 Ma, evidence of Idaho volcanism is lost. Montana plutonism continued with significant assimilation of radiogenic basement and regional centers of local magma emplacement (i.e., Pioneer batholith).
Publisher
Geological Society of America
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献