Episodic magmatism of the Gongga batholith (eastern Tibet) revealed by detrital zircon U-Pb geochronology: Insights into phased Xianshuihe fault activity and plateau growth

Author:

Zhao Yanglin12ORCID,Shen Xiaoming2,He Zhiyuan3,Yuan Xiaoping4,Ge Yukui5,Wang Shiguang6,Wu Lin7,Jia Yingying2,Tang Xiudang2

Affiliation:

1. 1School of Emergency Management Science and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

2. 2National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China

3. 3Laboratory for Mineralogy and Petrology, Department of Geology, Ghent University, Krijgslaan 281 S8, 9000, Ghent, Belgium

4. 4School of Earth Sciences, China University of Geosciences, Wuhan 430074, China

5. 5Institute of Geology, China Earthquake Administration, Beijing 100029, China

6. 6Institute of Geophysics, China Earthquake Administration, Beijing 100081, China

7. 7Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

Abstract Understanding the onset and episodes of magmatism is essential for comprehending tectonic history, crustal extension, and geodynamic processes. However, due to physical constraints, many places have remained unexplored, which makes it difficult to understand their geological evolution. Following thorough sedimentary provenance analysis, the chronology and periods of magmatism within a drainage area can be revealed through the detrital zircon U-Pb dating method. Here, we present detrital zircon U-Pb ages (n = 1429) obtained from sediments in modern rivers of the Gongga batholith in the eastern Tibetan Plateau. Our results reveal five major magmatic episodes since the early Mesozoic. Three episodes of magmatism occurred in the early to middle Mesozoic (ca. 230–200 Ma, ca. 200–180 Ma, and ca. 180–160 Ma), followed by a protracted period of magmatic quiescence. During the Cenozoic, there were two main periods of magmatism at ca. 50–25 Ma and ca. 25–5 Ma. This is consistent with bedrock geochronological data acquired previously. We propose that the Mesozoic magmatism was most likely caused by postcollisional extension after the closure of the Paleo-Tethys Ocean. The two Cenozoic magmatic episodes are coeval with the progressive intensification of Xianshuihe fault activity. Consequently, these episodes highlight two significant phases of plateau growth in the eastern Tibetan Plateau: the northward push of the Indian plate and “lateral extrusion,” which is consistent with the ongoing subduction of the Indian plate beneath the Eurasian plate.

Publisher

Geological Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3