Land plant evolution decreased, rather than increased, weathering rates

Author:

D’Antonio Michael P.1,Ibarra Daniel E.1,Boyce C. Kevin1

Affiliation:

1. Department of Geological Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, California 94305-2115, USA

Abstract

Abstract The repeated evolution of trees is widely thought to have enhanced the capacity of silicate weathering via the impact of deep rooting. However, land plants are also responsible for wetland assembly and organic carbon burial. The total burial output of carbon via both organic and inorganic deposition must balance input to the exogenic system from volcanic outgassing on million-year time scales. Increased partitioning of carbon burial toward organic carbon and away from inorganic carbon reduces the marine carbonate burial flux, necessitating a lowered total flux of alkalinity to the oceans to maintain mass balance in the Earth’s surface carbon cycle. This flux includes the nutrient delivery from the terrestrial vegetation implicated as a driver of marine evolution, extinction, and environmental change including anoxia and black shale formation. Here, the burial of terrestrial organic carbon, first substantially in the Devonian and continuing through to the present, is argued to require a reduction in silicate weathering rates when compared to earlier times, given the independence of volcanic outgassing from weathering on short time scales. Land plants still may cause reductions in steady-state atmospheric CO2 levels, but via increasing the silicate weathering feedback strength, not silicate weathering rates. The mass-balance constraints on the long-term carbon cycle provide a mechanism for linking how land plant evolution simultaneously increased nutrient recycling and weathering efficiency of the Earth’s surface.

Publisher

Geological Society of America

Subject

Geology

Reference65 articles.

1. Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events;Algeo,1998

2. Land plant evolution and weathering rate changes in the Devonian;Algeo;Journal of Earth Science,2010

3. Late Devonian oceanic anoxic events and biotic crises: “Rooted” in the evolution of vascular land plants?;Algeo;GSA Today, v. 5,1995

4. The rise of oxygen and siderite oxidation during the Lomagundi Event;Bachan,2015

5. A model for the decrease in amplitude of carbon isotope excursions across the Phanerozoic;Bachan;American Journal of Science,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3