Progressive fracturing in alluvial clasts

Author:

Shaanan Uri1,Mushkin Amit1,Rasmussen Monica2,Sagy Amir1,Meredith Philip3,Nara Yoshitaka4,Keanini Russell5,Eppes Martha-Cary2

Affiliation:

1. 1Geological Survey of Israel, 32 Yesha’ayahu Leibowitz, Jerusalem 9692100, Israel

2. 2Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA

3. 3Rock and Ice Physics Laboratory, Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK

4. 4Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan

5. 5Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA

Abstract

Rock fracturing sets the pace for a range of geomorphic processes. While experimental studies and modeling have provided invaluable insights into the mechanisms and rates of rock fracturing as a function of stress, time, and environmental conditions, field-based observations of subaerial fracturing evolution over geologic time are scarce. To address this knowledge gap, we conducted a systematic study of fractures that developed subaerially and in situ within clasts perched on abandoned late Quaternary alluvial surfaces (ca. 0, ca. 14, and ca. 62 ka in age) in the hyperarid Dead Sea Rift Valley, Israel. Using quantitative field observations, petrographic, and scanning electron microscopy, and micron-scale laser scans of fracture surfaces we found that fractures exhibit a consistent pattern of three distinctive weathering zones: (1) an “Outer Zone,” where fracture surface morphology resembles the clast exterior; (2) an “Accumulation Zone,” where fractures are infilled by “loose” accumulated particles; and (3) an “Inner Zone” where fractures extend inward to the crack-tip and preferentially follow grain boundaries. Crack-tips are characterized as a distinct micro domain that consists of fracture-parallel microcracks, chemical alteration, and dissolution morphologies. Altogether, the laboratory results indicate chemically enhanced fracturing and infiltration of water ahead of traction-free, open crack-tips. Field measurements also revealed an increase in fracture number density over geologic time. Our results highlight new details regarding the progressive nature of mechanical weathering through geologic time and the role of moisture as a potential rate-setting factor in the fracturing that allows mechanical weathering.

Publisher

Geological Society of America

Subject

Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3