Taking time to twist a continent—Multistage origin of the New Zealand orocline

Author:

Lamb S.1,Mortimer N.2

Affiliation:

1. Institute of Geophysics, Victoria University of Wellington, Wellington 6140, New Zealand

2. GNS Science, Dunedin 9016, New Zealand

Abstract

Abstract In New Zealand, a giant coherent “Z” shape is defined by several curvilinear pre-Cenozoic basement terranes that extend across Zealandia for >1500 km along strike. It is widely assumed that this curvature was the result of bending during the Neogene, which together with ∼450 km of dextral displacement on the Alpine fault accommodated a total of ∼750 km of dextral shear through the New Zealand plate boundary zone between the Australian and Pacific plates. This would make it a very simple form of orocline. In fact, we show that its development was surprisingly complex and protracted, with a composite origin. Its western and southern parts were bent as much as 70° in the Mesozoic. In the Late Cretaceous, the already bent terranes were offset sinistrally by ∼250 km along the cross-cutting proto–Alpine fault, which acted as a transform to the rift between East and West Antarctica. Since the Eocene, and after Zealandia had completely separated from Antarctica, the two sides of the Alpine fault have undergone 45° of relative plate rotation, further bending the terranes. However, the eastern part of what appears today to be the same oroclinal structure has been created entirely since the Eocene, and mainly during the Neogene phase of dextral shear through the plate boundary, with large-scale internal bending and shortening. We suggest that multistage and composite evolutions may be typical features of oroclines, which would be difficult to unravel without a rich tectonic and plate motion database, such as that available for the New Zealand region.

Publisher

Geological Society of America

Subject

Geology

Reference34 articles.

1. Transform and rift structure of Paleogene crust near Resolution Ridge, Tasman Sea, southwest New Zealand;Barker;Geochemistry Geophysics Geosystems,2008

2. Cenozoic reconstructions of the Australia–New Zealand–South Pacific sector of Antarctica;Cande,2004

3. The orocline concept in geotectonics—Part I;Carey;Papers and Proceedings of the Royal Society of Tasmania,1955

4. Pn anisotropy beneath the South Island of New Zealand and implications for distributed deformation in continental lithosphere: Journal of Geophysical Research;Collins;Solid Earth,2014

5. Revised Pacific-Antarctic plate motions and geophysics of the Menard Fracture Zone;Croon;Geochemistry Geophysics Geosystems,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3