Carbon released by sill intrusion into young sediments measured through scientific drilling

Author:

Lizarralde Daniel1,Teske Andreas2,Höfig Tobias W.3,González-Fernández Antonio4,

Affiliation:

1. 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

2. 2Department of Earth, Marine and Environmental Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

3. 3International Ocean Discovery Program, Texas A&M University, 1000 Discovery Drive, College Station, Texas 77845, USA

4. 4Department of Geology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), 3918 Carretera Ensenada-Tijuana, Ensenada, Baja California 22860, Mexico

Abstract

AbstractThe intrusion of igneous sills into organic-rich sediments accompanies the emplacement of igneous provinces, continental rifting, and sedimented seafloor spreading. Heat from intruding sills in these settings alters sedimentary organic carbon, releasing methane and other gasses. Recent studies hypothesize that carbon released by this mechanism impacts global climate, particularly during large igneous province emplacements. However, the direct impacts of sill intrusion, including carbon release, remain insufficiently quantified. Here, we present results from International Ocean Discovery Program (IODP) Expedition 385 comparing drill-core and wireline measurements from correlative sedimentary strata at adjacent sites cored in Guaymas Basin, Gulf of California, one altered by a recently intruded sill and one unaffected. We estimate 3.30 Mt of carbon were released due to this sill intrusion, representing an order of magnitude less carbon than inferences from outcrops and modeling would predict. This attenuated carbon release can be attributed to shallow intrusion and the high heat capacity of young, high-porosity sediments. Shallow intrusion also impacts sub-seafloor carbon cycling by disrupting advective fluxes, and it compacts underlying sediments, increasing potential carbon release in response to subsequent intrusions.

Publisher

Geological Society of America

Subject

Geology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3